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A B S T R A C T

Multimodal data-based classification methods have been widely used in the diagnosis of Alzheimer’s disease
(AD) and have achieved better performance than single-modal-based methods. However, most classification
methods based on multimodal data tend to consider only the correlation between different modal data
and ignore the inherent non-linear higher-order relationships between similar data, which can improve
the robustness of the model. Therefore, this study proposes a hypergraph 𝑝-Laplacian regularized multi-
task feature selection (H𝑝MTFS) method for AD classification. Specifically, feature selection for each modal
data is considered as a distinct task and the common features of multimodal data are extracted jointly by
group-sparsity regularizer. In particular, two regularization terms are introduced in this study, namely (1)
a hypergraph 𝑝-Laplacian regularization term to retain higher-order structural information for similar data,
and (2) a Frobenius norm regularization term to improve the noise immunity of the model. Finally, using
a multi-kernel support vector machine to fuse multimodal features and perform the final classification. We
used baseline sMRI, FDG-PET, and AV-45 PET imaging data from 528 subjects in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) to evaluate our approach. Experimental results show that our H𝑝MTFS method
outperforms existing multimodal-based classification methods.
1. Introduction

Alzheimer’s disease (AD) [1] is an insidious neurodegenerative dis-
ease that develops with loss of memory, language and mobility. Many
surveys [2–4] have shown that the number of people with AD and the
costs of treatment and care associated with AD is increasing rapidly.
AD has become a major threat to patient safety and socio-economic
well-being. Early diagnosis of AD and its prodromal stage, mild cogni-
tive impairment (MCI), can contribute significantly to improving the
clinical outcome of people with AD. Neuroimaging techniques, such
as structural magnetic resonance imaging (sMRI), fluorodeoxyglucose
positron emission tomography (FDG-PET) and AV-45 PET, have proven
to be effective tools for the early diagnosis of AD/MCI.

In recent years, with the development of machine learning, com-
bining neuroimaging data with machine learning for AD/MCI classi-
fication has become a hot research topic. In AD/MCI classification
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studies based on image data and machine learning, most studies use
only single modal image data. For example, Klöppel et al. [5], Chu
et al. [6], Ahmed et al. [7], and Liu et al. [8] used only MRI images and
support vector machines (SVM) to distinguish AD/MCI from normal
controls (NC). Similarly, Illán et al. [9], Padilla et al. [10], and Jiang
et al. [11] used only PET images and SVM for AD/MCI classification.
However, more and more studies have confirmed that data from differ-
ent modalities can provide complementary information [12–15], with
the combined modality of MRI and PET being the most commonly
used multimodal AD/MCI diagnostic option. Since MRI and PET images
can provide structural and metabolic information about the patient’s
brain in respect, the simultaneous use of MRI and PET images can
complement each other and improve the accuracy of AD diagnosis. For
example, Liu et al. [12] and Suk et al. [13] combined MRI images and
PET images to classify AD and obtained an accuracy of 91.40% and
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95.35%, respectively; Zhu et al. [14] and Gray et al. [15] introduced
MRI- and PET-based cerebrospinal fluid (CSF) data and genetic data,
respectively, to further improve the classification performance of AD/
MCI.

Although the multimodal AD/MCI approaches described above have
produced good results, they still face two main challenges. First, differ-
ent modalities have different distributions of data, and integrating these
multimodal data to understand AD pathology effectively is still ardu-
ous. Many early studies directly combine feature matrices of distinct
modalities of data, which is not enough to mine the hidden information
related to pathology. To address such a problem, Zhang et al. [16]
proposed a combination of multi-kernel combination and SVM (called
multi-kernel SVM, MKSVM) that integrates multimodal data effectively
and embeds it naturally into a traditional SVM classifier. Second, there
is an inherent correlation between multimodal data, and removing
redundant or irrelevant features and extracting common features from
multimodal data is still challenging. To solve this problem, Zhang
et al. [17] proposed a multi-task feature selection (MTFS) method,
which treats feature selection of different modal data as different tasks,
extracts common features of multimodal data by group-sparsity regu-
larizer, and finally classifies them using MKSVM. Based on the MTFS
method, Liu et al. [18] and Jie et al. [19] retained structural informa-
tion of similar data by introducing different constraints to extract more
discernible common features, respectively. Among them, Liu et al. [18]
selected complementarity information from multimodal data through
the multimodal relational constrained multi-tasking feature selection
(IMTFS for short) method. Jie et al. [19] capture the intrinsic correla-
tion of multiple modal data through a manifold regularized multi-task
feature learning (M2TFS for short) method. In general, the IMTFS and
M2TFS methods preserve the underlying structural information of the
data by modeling the relationships between like data. Compared to the
underlying structural information of the data, the higher-order struc-
tural information of the data is more discriminative, which can further
improve the classification performance of the model. Hypergraphs are a
usual method of capturing information about the higher-order structure
of data and can be used to model complex relationships between
individuals through connections between hyperedges and vertices [20].
Hypergraph methods are now widely used in computer vision [21,22],
bioinformatics [23,24], and medical image analysis [25,26]. Inspired
by the M2TFS method and the hypergraph method, this study proposes
a multi-task feature selection method, called hypergraph 𝑝-Laplacian
regularized multi-task feature selection (abbreviated as H𝑝MTFS), to
better capture the correlation between sMRI images, FDG-PET images,
and AV-45 PET images. Specifically, we treat feature selection of dif-
ferent modal data as distinct tasks and jointly extract common features
of multimodal data by group-sparsity regularizer. Furthermore, we
introduced two regularization terms simultaneously: (1) a hypergraph
𝑝-Laplacian regularization term. In this study, the complex relationships
between brain images are described by hypergraphs, and the hyper-
graph Laplacian is usually used to capture the features of hypergraphs.
We choose the hypergraph 𝑝-Laplacian, which has better performance
than the ordinary hypergraph Laplacian, to capture the features of the
hypergraph and better preserve the higher-order structural information
of similar data; (2) a Frobenius norm regularization term. The model
is constrained from the perspective of spatial constraints to enhance
the sparsity of elements, simplify the model, and improve the noise
resistance of the model. Finally, the extracted multimodal features are
fused and classified using MKSVM. Experiments on the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset have shown that the
proposed approach can capture correlations between different modality
data well and help improve the accuracy of AD/MCI classification.

The rest of the paper is organized as follows. In Section 2, we
describe in detail the dataset and data pre-processing methods used for
the study. In Section 3, we describe in detail the overall framework
of this study, including hypergraph construction, multimodal feature
2

selection, and multi-kernel learning. In Section 4, the evaluation of our
Table 1
Demographic information of the subjects in this study.

Diagnosed Gender(M/F) Age
(Mean ±SD)

MMSE
(Mean ±SD)

AD 83/61 74.56 ±8.16 23.06 ±2.10
sMCI 80/52 71.62 ±7.19 28.26 ±1.62
pMCI 37/34 73.85 ±6.36 26.16 ±2.14
NC 87/94 71.79 ±6.96 27.87 ±1.70

Note. Abbreviations: MMSE=Mini-Mental State Examination; SD=Standard Deviation;
AD=Alzheimer’s disease; sMCI=stable mild cognitive impairment; pMCI=progressive
mild cognitive impairment; NC=normal control.

proposed approach is presented. In Section 5, we discuss the effects
of different regularization conditions and regularization parameters on
classification performance and compare our approach with existing
methods. In Section 6, we analyze the limitations of this study. Finally,
we conclude Section 7.

2. Materials

2.1. Subject selection

The multimodal image data used in this study were obtained from
the ADNI database (adni.loni.usc.edu). ADNI is a global study to ex-
plore the pathogenesis of AD and develop treatments to delay or
prevent the progression of AD. As of 2022, the ADNI dataset has been
studied in four phases, namely ADNI-1, ADNI-GO, ADNI-2, and ADNI-
3. In this study, we selected 528 subjects from the ADNI-2 stage with
concurrent baseline sMRI images, FDG PET images, and AV-45 PET im-
ages, including 144 AD subjects, 132 sMCI subjects, 71 pMCI subjects,
and 181 NC subjects. sMCI stands for stable MCI, where patients do
not develop AD within 0–36 months, and pMCI stands for progressive
MCI, where patients develop AD within 6–36 months. In particular,
all sMRI images (labeled ‘‘MT1; GradWarp; N3m’’), FDG PET images
(labeled ‘‘Coreg, Avg, Std Img and Vox Siz, Uniform Resolution’’), and
AV-45 PET images (labeled ‘‘AV45 Coreg, Avg, Std Img and Vox Siz,
Uniform Resolution’’) were collected from the ADNI dataset server in
the most complete pre-processed format. Demographic information on
all subjects is shown in Table 1.

2.2. Data pre-processing

In this study, for all sMRI images, we first performed skull stripping,
tissue segmentation, alignment, and modulation using the ‘‘segmented
data’’ module of the CAT12 toolkit [27] (neuro.uni-jena.de/cat/) to ob-
tain grey matter images (called GM-MRI) with dimensions of
121 × 145 × 121. Then divided the GM-MRI images of each sub-
ject into 90 regions of interest (ROIs) according to the automatic
anatomical labeling (AAL) atlas, and finally calculated the grey matter
volume of each ROI as a feature [28]. For all FDG PET images and
AV-45 PET images, we first used the FLIRT module in the FSL soft-
ware [29] (fsl.fmrib.ox.ac.uk/fsl/fslwiki) to register each subject’s FDG
PET images and AV-45 PET images to their respective corresponding
pre-processed sMRI images, and then calculated the average intensity of
each ROI as a feature by AAL atlas. Thus, 90 features were obtained for
each modal image of each subject. In addition, as in the literature [30],
we performed z-score normalization on the obtained feature data.

3. Method

The overall framework of this study is shown in Fig. 1, which
mainly includes four steps: data pre-processing, hypergraph construc-
tion, multimodal feature selection, and classification. Specifically, the
sMRI images, FDG PET images, and AV-45 PET images were first pre-
processed to extract the grey matter volume or mean intensity of the 90

ROIs as pre-selected features (see Material 2 for detailed steps). Next,
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Fig. 1. The framework of multi-modality feature selection with hypergraph method.
Fig. 2. Hypergraph model and corresponding incidence matrix.
based on the extracted features, a hypergraph was constructed for each
modality of data to capture higher-order structural information of the
data. Then, the most discriminative common features were selected
from the pre-selected features by hypergraph 𝑝-Laplacian regularized
multi-task feature selection method. Finally, MKSVM was used for mul-
timodal feature fusion and classification. In the following, we describe
the proposed method.

3.1. Hypergraph construction

Hypergraphs were first proposed by Berge [31] to describe complex
relationships between data. Hypergraphs can connect 𝑛(𝑛 ≥ 2) vertices
simultaneously via hyperedge and can therefore describe higher-order
relationships between individuals, while traditional graph structures
where each edge can connect only two vertices. Mathematically, a hy-
pergraph 𝐺 can be represented as 𝐺(𝑉 ,𝐸,𝑤), where 𝑉 denotes vertexs,
𝐸 denotes hyperedges, and 𝑤 denotes the weight of the hyperedges.
In the AD classification tasks, the specific structure of the hypergraph
can be shown in Fig. 2(a), each vertex 𝑣𝑖 represents a subject, and its
value is the subject’s feature vector. Each hyperedge 𝑒𝑖 represents a
connection between multiple vertices, and the weight 𝑤(𝑒) represents
the importance of the connection. The structure of the hypergraph,
i.e. the relationship between the hyperedges and the vertices, is usually
3

represented by an incidence matrix 𝐇 ∈ {0, 1}|𝑉 |×|𝐸| (Fig. 2(b)):

𝐇(𝑣, 𝑒) =
{

1,
0,

𝑖𝑓 𝑣 ∈ 𝑒
𝑖𝑓 𝑣 ∉ 𝑒

(1)

In the AD classification tasks, we can use the 𝑘-nearest neighbor
strategy to generate a hypergraph. For subject 𝑣𝑖, the 𝑘 nearest neigh-
bors can be found by calculating the Euclidean distance between it
and the other subjects, and then connecting these 𝑘+1 subjects via the
hyperedge 𝑒𝑖. At this point, the 𝑣𝑖 rows and 𝑒𝑖 columns of the 𝐇 matrix
have a value of 1, indicating that the vertex 𝑣𝑖 is connected to the
hyperedge 𝑒𝑖 (as shown on Fig. 2(b)). Thus, a complete hypergraph is
a set of 𝑁 (number of subjects) vertices and 𝑁 hyperedges, all with a
hyperedge weight of 1.

The hypergraph 𝑝-Laplacian operator is typically used to preserve
higher-order structural features of the data [32–34], so we construct
the hypergraph 𝑝-Laplacian matrix according to the method of Saito
et al. [34]. First, calculate the degree of each vertex 𝑣 and each
hyperedge 𝑒 according to the 𝐇 matrix:

𝑑(𝑣) =
∑

𝑒∈𝐸
𝑤(𝑒)𝐇(𝑣, 𝑒) (2)

𝛿(𝑒) =
∑

𝑣∈𝑉
𝐇(𝑣, 𝑒) (3)

Secondly, let 𝐃𝑣 ∈ 𝑅|𝑉 |×|𝑉 |, 𝐃𝑒 ∈ 𝑅|𝐸|×|𝐸|, and 𝐖 ∈ 𝑅|𝐸|×|𝐸|

denote the degree matrices of vertexs, hyperedges and the weight of
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hyperedges respectively (where 𝐃𝑣𝑖,𝑖 = 𝑑(𝑣𝑖), 𝐃𝑒𝑖,𝑖 = 𝛿(𝑒𝑖), 𝐖𝑖,𝑖 = 𝑤(𝑒𝑖)),
then the adjacency matrix 𝐀 can be defined as:

= 𝐀𝑝 − 𝑑𝑖𝑎𝑔(𝑑𝑖𝑎𝑔(𝐀𝑝)) (4)

here 𝑑𝑖𝑎𝑔(.) denotes the diagonal matrix, and

𝑝 = 𝐇 ×𝐖 × (𝐃𝑒 −𝐖)−1 ×𝐇𝑇 (5)

Finally, the hypergraph 𝑝-Laplacian matrix (𝑝=2) can be calculated
s:
𝑝ℎ = 𝐃𝑣−1∕2 × (𝐃𝑣 − 𝐀) × 𝐃𝑣−1∕2 (6)

.2. Multi-task feature selection

Multi-task learning [16,19] is a method for improving the per-
ormance of a particular model by simultaneously learning relevant
nformation between 𝑀 related but not identical tasks. In the AD classi-
ication tasks, considering the selection of features for each modal data
s one task, the number of learning tasks 𝑀 is the type of modal data.
et the feature matrices of the multimodal data and their corresponding
lass label matrices be 𝐗𝑚 = [𝑥𝑚(1), 𝑥𝑚(2),… , 𝑥𝑚(𝑁)]𝑇 ∈ 𝑅𝑁×𝑑 and
= [𝑦1, 𝑦2,… , 𝑦𝑁 ]𝑇 ∈ 𝑅𝑁×1, where 𝑥𝑚(𝑖) is a column vector of size 𝑑×1

epresenting the 𝑑 features of subject 𝑖; 𝑦𝑖 is the class of subject 𝑖 with
value of 1 or -1. Then the objective function of the linear multi-task

eature selection model [35] can be defined as:

in
𝐖

1
2

𝑀
∑

𝑚=1
‖𝐘 − 𝐗𝑚𝐰𝑚‖22 + 𝜇‖𝐖‖2,1 (7)

Where the first term is the empirical error and 𝐰𝑚 ∈ 𝑅𝑑 is the
discriminant function parameter for task 𝑚. The second term is the
group-sparsity regularization term, 𝐖 = [𝐰1,𝐰2,… ,𝐰𝑀 ] ∈ 𝑅𝑑×𝑀 is a
weight matrix of 𝑀 modal vectors, and 𝜇 is the coefficient of the group-
sparsity regularization term. The ‘‘group-sparsity’’ can be achieved by
increasing the number of non-zero rows in the weight matrix by taking
the 𝑙2,1 norm of the matrix 𝐖:

‖𝐖‖2,1 =
𝑑
∑

𝑖=1
‖𝐰𝑖‖2 (8)

Since the feature selection task retains only those features whose coef-
ficients are not zero, the introduction of the 𝑙2,1 norm not only allows
for the joint extraction of common features across multiple tasks but
also further reduces the number of common features. It is worth noting
that these common features were extracted from the same brain regions
in different modality data so that we can interpret the effects of AD
on brain regions from different perspectives (MRI: structural, PET:
functional) based on these common features.

3.2.1. Hypergraph 𝑝-Laplacian regularized multi-task feature learning
In the M2TFS method, Jie et al. preserve information about the

underlying structure of similar data by introducing manifold regular-
ization term of the form (𝐗𝐰)𝑇𝐋(𝐗𝐰). Inspired by this, we introduce the
hypergraph 𝑝-Laplacian regularization term (𝐗𝐰)𝑇𝐋𝑝ℎ(𝐗𝐰) into the ob-
jective function to preserve the higher-order structural information of
similar data. Therefore, the objective function of our H𝑝MTFS method
is defined as follows:

min
𝐰

1
2

𝑀
∑

𝑚=1
‖𝐘 − 𝐗𝑚𝐰𝑚‖22 + 𝜇‖𝐖‖2,1 + 𝜆

𝑀
∑

𝑚=1
(𝐗𝑚𝐰𝑚)𝑇𝐋𝑚𝑝ℎ(𝐗𝑚𝐰𝑚) (9)

The first two terms are the same as Eq. (7), 𝐖 = [𝐰1,𝐰2,𝐰3], 𝑀
= 3. The third term is the hypergraph 𝑝-Laplacian regularization term,
𝜆 is its coefficient, and 𝐋𝑚𝑝ℎ is the hypergraph 𝑝-Laplacian matrix of
the 𝑚-th modal data. In addition, to improve the noise immunity of the
model, we also introduce a Frobenius norm regularization term in the
4

objective function, which enhances the sparsity of the data and makes
each element of W infinitely close to zero, thus simplifying the model.
Therefore, the final objective function is defined as follows:

min
𝐰

1
2

𝑀
∑

𝑚=1
‖𝐘 − 𝐗𝑚𝐰𝑚‖

2
2 + 𝜇‖𝐖‖2,1 + 𝜆

𝑀
∑

𝑚=1
(𝐗𝑚𝐰𝑚)

𝑇𝐋𝑚𝑝ℎ(𝐗𝑚𝐰𝑚) + 𝛾‖𝐖‖

2
𝐹

(10)

In summary, our H𝑝MTFS method not only extracts common fea-
tures jointly from multimodal data but also retains higher-order struc-
tural information of similar data through hypergraph 𝑝-Laplacian reg-
ularization term, resulting in more discriminative features.

3.2.2. Optimization algorithm
Since existing sparse learning models are unable to solve objec-

tive functions that contain both group-sparsity regularization term,
hypergraph 𝑝-Laplacian regularization term and Frobenius norm reg-
ularization term, we use the accelerated approximate gradient (APG)
method [36,37] to solve our objective function. First, separate the
objective function in Eq. (10) to a smooth part (Eq. (11)) and a
nonsmooth part (Eq. (12)):

𝑔(𝐖) = 1
2

𝑀
∑

𝑚=1
‖𝐘 − 𝐗𝑚𝐰𝑚‖22 + 𝜆

𝑀
∑

𝑚=1
(𝐗𝑚𝐰𝑚)𝑇𝐋𝑚𝑝ℎ(𝐗𝑚𝐰𝑚) + 𝛾‖𝐖‖

2
𝐹 (11)

(𝐖) = 𝜇‖𝐖‖2,1 (12)

The objective function can then be expressed as𝑓 (𝐖) = 𝑔(𝐖)+ℎ(𝐖).
ext, constructed the function 𝛺 to approximate 𝑓 (𝐖):

𝑙(𝐖,𝐖𝑖) = 𝑔(𝐖𝑖) + (𝐖 −𝐖𝑖,∇𝑔(𝐖𝑖)) +
𝑙
2
‖𝐖 −𝐖𝑖‖

2
𝐹 + ℎ(𝐖) (13)

here ∇𝑔(𝐖𝑖) is the gradient of 𝑔(𝐖) at the 𝑖th iteration point 𝐖𝑖 and
is the step length. Finally, the APG algorithm is updated by Eq. (14):

𝑖+1 = argmin
𝐖

1
2
‖𝐖 −𝐎‖

2
𝐹 + 1

𝑙
ℎ(𝐖)

= arg min
𝑤1 ,…,𝑤𝑑

1
2

𝑑
∑

𝑗=1
(‖𝐰𝑗 − 𝐨𝑗‖22 +

𝜇
𝑙
‖𝐰𝑗‖2)

(14)

Where 𝐰𝑗 and 𝐨𝑗 denote the 𝑗th row of matrices 𝐖 and 𝐎 respec-
tively. The step length 𝑙 is determined by a linear search, and the matrix
𝐎 can be calculated using Eq. (15):

𝐎 = 𝐖𝑖 −
1
𝑙
∇𝑔(𝐖𝑖) (15)

Furthermore, following Xi et al. [37] and Liu et al. [38], we decom-
ose the update step of the APG algorithm (Eq. (14)) into 𝑑 independent

subproblems to solve:

𝐰∗
𝑗 =

{

(1 − 𝜇
𝑙‖𝐨𝑗‖2

)𝐨𝑗 ,
0,

𝑖𝑓 ‖𝐨𝑗‖2 >
𝜇
𝑙

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(16)

And solving 𝛺 by computing the search point 𝐐 according to the
method proposed by Liu et al. [38]:

𝐐𝑖 = 𝐖𝑖 + 𝜂𝑖(𝐖𝑖 −𝐖𝑖−1) (17)

𝜂𝑖 =
(1 − 𝜓𝑖−1)𝜓𝑖

𝜓𝑖−1
(18)

𝜓𝑖 =
2

𝑖 + 3
(19)

The specific optimization process is described in Algorithm 1, where
𝐾 is the maximum number of iterations, 𝜎 is the factor controlling the
step size 𝑙.
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Algorithm 1
Input:

Multimodal data matrix X = [X1,X2,… ,X𝑀 ]𝑇

Class label matrix Y = [𝑦1, 𝑦2, ..., 𝑦𝑁 ]𝑇

Output:
W𝐾 , 𝐽 ∗

Initialization: 𝜇 ≥ 0, 𝜆 ≥ 0, 𝛾 ≥ 0, 𝑙0 ≥ 0, 𝜎 ≥ 1,W0 = 0, 𝜓0 = 1;
For 𝑖 = 1 to 𝐾
1: Compute the search point Q𝑖 (Equation 17)
2: 𝑙 = 𝑙𝑖−1
3: Calculate W𝑖+1 (Equation 14)
4: While 𝑓 (W𝑖+1) > 𝛺𝑙(W𝑖+1,Q𝑖), 𝑙 = 𝜎𝑙 (Calculate 𝛺𝑙 from Equation
13)
5: Set 𝑙𝑖 = 𝑙
End
Calculate 𝐽 ∗ = {𝑗||w𝑗 | > 0.01, 𝑗 = 1, 2, ..., 𝑑}

3.2.3. Multi-kernel SVM
In this study, we used MKSVM to fuse and classify the final sMRI,

FDG PET, and AV-45 PET features. Specifically, generate a correspond-
ing kernel matrix for each modal data at first:

𝑘𝑚(𝐱𝑚(𝑖), 𝐱𝑚(𝑗)) = 𝜙((𝐱𝑚(𝑖))𝑇 𝐱𝑚(𝑗)) (20)

The 𝑀 kernel matrices were then linearly fused:

𝑘(𝐱(𝑖), 𝐱(𝑗)) =
𝑀
∑

𝑚=1
𝛽𝑚𝑘𝑚(𝐱𝑚(𝑖), 𝐱𝑚(𝑗)) (21)

Where 𝛽𝑚(𝛽𝑚 > 0, 𝛽1+⋯+𝛽𝑀 = 1) is the kernel combination weight,
and the optimal 𝛽𝑚 is determined by cross-validation on the training set
via grid search. Finally, the optimal 𝛽𝑚 and linear kernel are combined
to train the MKSVM model. When a new subject data 𝐱𝑚 is input to the
trained MKSVM model, the MKSVM model predicts the category of that
subject by the following decision function:

𝑓 (𝐱) = si 𝑔𝑛(
𝑁
∑

𝑖=1
𝑦𝑖𝛼𝑖

𝑀
∑

𝑚=1
𝛽𝑚𝑘𝑚(𝐱𝑚(𝑖), 𝐱𝑚) + 𝑏) (22)

In particular, in our experiments, we consider the absolute value
of the components in the normal vector of the linear SVM hyperplane
(denoted 𝐖𝑆𝑉𝑀 ) to be the weights of the features [5]. Thus, we only
need to rank the 𝐖𝑆𝑉𝑀 to filter out the brain regions that contribute
most to the AD/MCI classification task.

4. Experimentation and analysis

4.1. Experimental settings

To validate the effectiveness of our H𝑝MTFS method, we conducted
four sets of binary classification experiments on the ADNI-2 dataset:
(1) AD vs. NC, (2) pMCI vs. sMCI, (3) MCI vs. NC, and (4) AD vs. NC.
For each set of binary classification experiments, we used a 10-fold
cross-validation strategy to avoid the impact of bias on classification
5

performance caused by randomly dividing the dataset. In addition, we
used four specific metrics to assess classification performance: classifi-
cation accuracy (ACC=(𝑇𝑃 + 𝑇𝑁)∕(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)), sensitivity
(SEN=𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁)), specificity (SPE=𝑇𝑁∕(𝑇𝑁 + 𝐹𝑃 )), and area
under the subject operating characteristic curve (AUC), where 𝑇𝑃 , 𝑇𝑁 ,
𝐹𝑃 , and 𝐹𝑁 indicate true positive, true negative, false positive and
false negative, respectively.

Notably, our H𝑝MTFS method involves four hyperparameters,
namely the number of neighbors 𝑘, the group-sparsity regularization
coefficient 𝜇, the hypergraph 𝑝-Laplace regularization coefficient 𝜆, and
the Frobenius norm regularization coefficient 𝛾. All four hyperparame-
ters were determined by grid search with 10-fold cross-validation on
the training set. Specifically, in the 10-fold cross-validation used to
calculate classification performance, we perform another 10-fold cross-
validation to find the optimal 𝜇, 𝜆 and 𝛾 before training on each fold
and then use the optimal hyperparameters found to train on that fold.
Next, different 𝑘 values are set to perform 10-fold cross-validation,
which is used to calculate the classification performance and determine
the optimal 𝑘 value. The range of values of 𝑘 is {3, 5, 7, 10, 20, 30, 40}
and the range of values of 𝜇, 𝜆 and 𝛾 are {0.001, 0.01, 0.1, 1, 10, 100}. In
ddition, in the MKSVM with a linear kernel, the value of 𝐶 is 1, the
ernel combination coefficients 𝛽𝑀𝑅𝐼 and 𝛽𝐹𝐷𝐺−𝑃𝐸𝑇 take values in the
ange {0, 0.3, 0.6, 0.9}, and 𝛽𝐴𝑉 45−𝑃𝐸𝑇 = 1 − 𝛽𝑀𝑅𝐼 − 𝛽𝐹𝐷𝐺−𝑃𝐸𝑇 .

.2. Classification results

Table 2 shows the classification results for AD vs. NC, pMCI vs.
MCI, MCI vs. NC, and AD vs. MCI (number of nearest neighbor 𝑘 =
). To highlight the superiority of the proposed method, we used a
ingle modal image (sMRI or FDG PET or AV-45 PET) and different
ombinations of multimodal images (sMRI+FDG PET or FDG PET+AV-
5 PET or sMRI+AV-45 PET or sMRI+FDG PET+AV-45 PET (All)) to
erform each group of classification tasks. As can be seen from Table 2:
1) classification performance using multimodal images is mostly better
han that using only single modal images for all classification tasks,
s multimodal image features achieve complementary information and
rovide more valid information. (2) Classification results using three
odal images outperform those using two modal images because three

mage features contain more valid information than two image features.
3) The classification accuracy of our proposed method was 98.78%
nd 86.47% for the AD and NC classification task and the AD and
CI classification task, respectively. It indicates that our proposed
ethod can effectively distinguish AD patients from NC subjects or MCI
atients. (4) Most of the classification accuracies of existing research
ethods for pMCI and sMCI classification task are below 90% [8,39],
hile our proposed method achieves 92.62% classification accuracy,
4.29% sensitivity, and 96.98% specificity using three modal images. It
ndicates that our proposed method has good classification performance
n distinguishing different subtypes of MCI.

Furthermore, as can be seen in Table 2, the classification perfor-
ance of our proposed method for MCI and NC is not very satisfactory,
ith an accuracy of 78.15%, a sensitivity of 70%, and a specificity
f 87.31%. Therefore, we further classified AD, pMCI, sMCI, and NC.
able 3 shows the classification results for AD vs. pMCI, AD vs. sMCI,
Table 2
Classification results using different modalities images in AD vs. NC, pMCI vs. sMCI, MCI vs. NC, and AD vs. MCI.

Data AD vs. NC (%) pMCI vs. sMCI (%) MCI vs. NC (%) AD vs. MCI (%)

ACC SEN SPE ACC SEN SPE ACC SEN SPE ACC SEN SPE

sMRI 95.09 93.05 96.70 84.71 74.46 90.11 74.48 70.45 78.98 80.44 70.90 87.17
FDG PET 73.91 78.71 70.18 60.62 42.86 70.55 58.01 57.14 59.04 64.51 62.52 65.95
AV-45 PET 52.35 41.76 60.64 47.26 29.46 56.87 48.15 51.19 44.71 49.85 37.91 58.12
sMRI+FDG PET 97.85 96.52 98.89 86.74 73.21 93.90 77.38 69.07 86.78 86.18 76.52 93.10
sMRI+AV-45 PET 96.00 93.71 97.87 88.69 81.61 92.47 76.08 66.55 86.81 78.71 61.95 90.67
FDG PET+AV-45 PET 96.61 92.33 1.00 88.19 78.75 93.13 76.35 67.10 86.73 83.83 71.52 92.60
All 98.78 97.24 1.00 92.62 84.29 96.98 78.15 70.00 87.30 86.47 76.00 94.07
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Table 3
Classification results using different modalities images in AD vs. pMCI , AD vs. sMCI , pMCI vs. NC, and sMCI vs. NC.

Data AD vs. pMCI (%) AD vs. sMCI (%) pMCI vs. NC (%) sMCI vs. NC (%)

ACC SEN SPE ACC SEN SPE ACC SEN SPE ACC SEN SPE

sMRI 77.66 90.05 51.96 89.54 91.10 87.86 92.42 84.29 95.56 73.83 53.08 88.95
FDG PET 62.79 75.05 38.57 72.51 76.43 68.24 74.18 55.00 81.75 54.39 37.20 66.75
AV-45 PET 41.66 41.71 41.59 60.50 76.81 26.96 61.91 38.04 71.29 52.65 44.78 58.45
sMRI+FDG PET 81.39 84.67 74.64 92.78 90.33 95.44 96.43 88.75 99.47 74.47 53.19 90.00
sMRI+AV-45 PET 71.60 73.71 67.68 90.31 85.48 95.49 96.02 87.32 99.44 75.11 55.44 89.50
FDG PET+AV-45 PET 79.98 80.48 78.93 92.03 92.38 91.65 96.02 90.00 98.36 75.77 54.78 91.14
ALL 83.22 84.67 80.54 94.61 92.43 96.98 98.40 94.29 1.00 77.36 56.32 92.81
Fig. 3. ROC curves obtained for different classification tasks using different methods. (a) AD vs. NC, (b) pMCI vs. sMCI, (c) MCI vs. NC, (d) AD vs. MCI, (e) AD vs. pMCI, (f) AD
vs. sMCI, (g) pMCI vs. NC, and (h) sMCI vs. NC.
pMCI vs. NC, and sMCI vs. NC, respectively. From Table 3, we can also
see that most of the classification performances using multimodal im-
ages are better than those using only single modal images. Interestingly,
the classification accuracy of our proposed method was greater than
94.61% for pMCI vs. NC and AD vs. sMCI, compared to 83.22% and
77.36% for AD vs. pMCI and sMCI vs. NC, respectively. We speculate
6

that this may be because pMCI subjects eventually develop AD, and
therefore their features extracted from sMRI images, FDG PET images,
and AV-45 PET images may be similar to those of AD subjects, whereas
sMCI subjects do not develop AD, and therefore their features extracted
from sMRI images, FDG PET images, and AV-45 PET images may be
similar to those of NC subjects. Therefore, the final AD and pMCI
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Table 4
The AAL atlas names of the top 10 contributing brain regions in different classification tasks.

Classification tasks Top 10 brain regions

AD vs. NC Hippocampus_L (No. 37), Temporal_Mid_R (No. 86), Putamen_L (No. 73), Fusiform_R (No. 56),
Amygdala_L (No. 41), Amygdala_R (No. 42), Temporal_Inf_R (No. 90), Calcarine_R (No. 44),
Angular_R (No. 66), Hippocampus_R (No. 38)

pMCI vs. sMCI Temporal_Mid_R (No. 86), Cingulum_Mid_R (No. 34), Frontal_Mid_L (No. 7), Caudate_R(No. 72),
Cingulum_Ant_R (No. 32), Occipital_Mid_R (No. 52), Temporal_Inf_R (No. 90), Temporal_Inf_L (No. 89),
Temporal_Pole_Sup_L (No. 83), Fusiform_R (No. 56)

MCI vs. NC Hippocampus_R (No. 38), Frontal_Mid_R (No. 8), Cingulum_Mid_L (No. 33), Hippocampus_L (No. 37),
Fusiform_R (No. 56), Fusiform_L (No. 55), Frontal_Sup_Orb_L (No. 5), Temporal_Mid_R (No. 86),
Caudate_R (No. 72), Supp_Motor_Area_R (No. 20)

AD vs. MCI Temporal_Inf_R (No. 90), Frontal_Mid_Orb_R (No. 26), Frontal_Mid_L (No. 7), Insula_R (No. 30),
Angular_R (No. 66), Temporal_Inf_L (No. 89), Cingulum_Post_R (No. 36), Calcarine_L (No. 43),
Occipital_Mid_L (No. 51), Temporal_Mid_R (No. 86)

AD vs. pMCI Thalamus_R (No. 78), Frontal_Sup_Orb_R (No. 6), Thalamus_L (No. 77), Caudate_R (No. 72),
Occipital_Sup_L (No. 49), Angular_R (No. 66), Cingulum_Post_R (No. 36), Hippocampus_R (No. 38),
Temporal_Inf_L (No. 89), Frontal_Inf_Tri_R (No. 14)

AD vs. sMCI Frontal_Mid_Orb_R (No. 26), Rectus_R (No. 28), Frontal_Sup_Orb_R (No. 6), Olfactory_R (No. 22),
Fusiform_L (No. 55), Temporal_Mid_R (No. 86), Supp_Motor_Area_R (No. 20), Frontal_Mid_Orb_L (No. 25),
Putamen_R (No. 74), Cingulum_Mid_R (No. 34)

pMCI vs. NC Hippocampus_L (No. 37), Frontal_Sup_Orb_R (No. 6), Temporal_Mid_R (No. 86), Cingulum_Mid_R (No. 34),
Frontal_Mid_L (No. 7), Thalamus_L (No. 77), Cingulum_Mid_L (No. 33), Insula_L (No. 29),
Precuneus_R (No. 68), Fusiform_R (No. 56)

sMCI vs. NC Frontal_Inf_Oper_R (No. 12), Cingulum_Ant_L (N0. 31), Hippocampus_L (No. 37), Frontal_Mid_Orb_L (No. 25),
Rectus_L (No. 27), Cingulum_Post_L (No. 35), Frontal_Inf_Tri_R (No. 14), Cingulum_Mid_L (No. 33),
Frontal_Mid_Orb_R (No. 26), Frontal_Sup_Orb_R (No. 6)
classification and sMCI and NC classification gave poor classification
results.

In addition, to further evaluate the robustness of the classification
model, we plot ROC plots of eight groups of binary classification tasks
using different modality images. From Fig. 3(a)–(h), it can be seen that
(1) in all classification tasks, the AUC values using three modal image
classification (0.998, 0.923, 0.775, 0.861, 0.776, 0.948, 0.971, 0.715)
are greater than those using single modal image classification, and most
of the AUC values using three modal image classification are greater
than those using two modal images. It indicates that the classification
model obtained by training with the features extracted by the proposed
method has good robustness. (2) The AUC values for the MCI vs. NC
classification are smaller than those for AD vs. NC, pMCI vs. sMCI, and
AD vs. MCI, which is consistent with the results for the first four groups
(Table 2). The AUC values for AD vs. pMCI were lower than those for
AD vs. sMCI, and the AUC values for sMCI vs. NC were lower than those
for pMCI vs. NC, similar to the classification results for the latter four
groups (Table 3).

4.3. Brain region analysis

To identify the brain regions that contributed most to the AD
classification tasks, we rank the contributions of all brain regions by the
𝐖𝑆𝑉𝑀 mentioned in Section 3.2.3. Table 4 lists the AAL atlas names of
the top 10 contributing brain regions in the eight classification tasks of
AD vs. NC, pMCI vs. sMCI, MCI vs. NC, AD vs. MCI, AD vs. pMCI, AD vs.
sMCI, pMCI vs. NC, and sMCI vs. NC, with their specific visualizations
are shown in Fig. 4(a)–(h). Since the first four classification tasks
overlapped with the last four classification tasks (e.g. AD vs. MCI and
AD vs. pMCI (or AD vs. sMCI)), we only analyzed the top 10 brain
regions of the first four classification tasks in more detail. For AD
and NC classification, our approach selected the hippocampus (37/38),
amygdala (41/42), temporal pole (86/90), and other brain regions; For
pMCI and sMCI classification, our approach selected brain regions in
the para-cingulate gyrus (32/34), temporal pole (83/86/89/90) and
caudate nucleus (72); For MCI and NC classification, our approach
selected brain regions in the hippocampus (37/38), pallidum (55/56)
and caudate nucleus (72); For AD and MCI classification, our approach
7

selected brain regions such as the temporal pole (86/89/90), posterior
cingulate gyrus (36) and middle frontal gyrus (7). Many studies have
confirmed the link between these brain areas and AD/MCI [40–43]. For
example, Ban et al. [41] found significant changes in hippocampus and
thalamus in AD and MCI patients compared to NC controls; Persson
et al. [42] found that the hippocampus was smaller and the caudate
nucleus was larger in AD/MCI patients. In addition, as early as 1994,
the temporal pole was identified as the more severely damaged brain
region in AD patients [43]. Overall, our approach achieves classifica-
tion by working with AD-sensitive brain regions, suggesting that our
method is applicable to AD classification tasks.

5. Discussion

5.1. Effect of different regularization terms on classification performance

To investigate the effect of the group-sparsity regularization term,
the hypergraph 𝑝-Laplace regularization term, and the Frobenius norm
regularization term on classification performance, we set one (or two
or three) regularization coefficients to 0, and observed the change in
classification performance for each of the eight classification tasks.
Fig. 5 shows the changes in accuracy, sensitivity, and specificity after
the introduction of the different regularization terms, respectively. As
can be seen in Fig. 5, the accuracy, sensitivity, and specificity of
each group of classification tasks improved to varying degrees with
the introduction of different regularization terms. Specifically, when
𝜇 = 𝜆 = 𝛾 = 0, i.e. when no regularization term is introduced, our
method degenerates to the MKSVM method. When 𝜆 = 𝛾 = 0, i.e. when
group-sparsity regularization is introduced, our method degenerates to
the MTFS method, where the classification accuracy, sensitivity, and
specificity are higher than in the previous case. It suggests that group-
sparsity regularization terms help to extract fewer relevant features,
thus improving the accuracy of classification. When 𝛾 = 0, i.e. when
both group-sparsity regularization and hypergraph 𝑝-Laplacian regular-
ization are introduced, our method is similar to the M2TFS method,
with higher classification accuracy, sensitivity, and specificity than the
first two cases. It is good evidence that retaining the higher-order

structural information of the modal data can improve the classification
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Fig. 4. The brain regions corresponding to the top 10 weight values for different classification tasks (the blue lines on the right-sided sagittal image correspond to axial image
slices). (a) AD vs. NC. (b) pMCI vs. sMCI. (c) MCI vs. NC. (d) AD vs. MCI. (e) AD vs. pMCI. (f) AD vs. sMCI. (g) pMCI vs. NC. (h) sMCI vs. NC. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
performance of the model. When 𝜇 ≠ 0, 𝜆 ≠ 0, and 𝛾 ≠ 0, i.e. when
all three regularization terms are introduced, the overall classification
performance is better than in the first three cases, indicating that the
Frobenius norm regularization is more resistant to interference.

5.2. Effect of different hyperparameters on classification performance

In this study, we used four hyperparameters, including a nearest
neighbor number 𝑘 and three regularization parameters (the group-
sparsity regularization coefficient 𝜇, the hypergraph 𝑝-Laplacian reg-
ularization coefficient 𝜆, and the Frobenius norm regularization coef-
ficient 𝛾), which need to be adjusted. Figs. 6 and 7 show the effect of
different values of 𝜇, 𝜆, and 𝛾 on each group of classification tasks when
8

the value of 𝑘 is 7. In Fig. 6(a)–(h), the 𝑥-axis represents the range of
𝜇, the 𝑦-axis represents the classification accuracy, and the different
colored curves represent the different values of 𝜆. When the value of
𝛾 is fixed at 1, the 𝜆 curves for all classification tasks do not fluctuate
much as 𝜇 increases to 10, indicating that our method has good stability
over an appropriate range of 𝜇 values. When 𝜇 is greater than 10, all
𝜆 curves tend to decrease. This may be because when 𝜇 is too large,
there is too much sparsity resulting in too few common features being
extracted. In Fig. 7(a)–(h), the 𝑥-axis represents the range of values of 𝛾
and the rest is similar to Fig. 6. When 𝜇 is fixed at 10, all 𝜆 curves show
large fluctuations, indicating that the higher-order structural features of
the data have a greater impact on the classification results.
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Fig. 5. The changes in accuracy, sensitivity, and specificity after the introduction of the different regularization terms, respectively. (a) Accuracy under different regularization
conditions. (b) Sensitivity under different regularization conditions. (c) Specificity under different regularization conditions. Among them, 𝜇 = 𝜆 = 𝛾 = 0 indicates no regularization
term is introduced; 𝜆 = 𝛾 = 0 indicates group-sparsity regularization is introduced; 𝛾 = 0 indicates both group-sparsity regularization and hypergraph 𝑝-Laplacian regularization are
introduced; 𝜇 ≠ 0, 𝜆 ≠ 0, 𝛾 ≠ 0 indicates group-sparsity regularization, hypergraph 𝑝-Laplacian regularization, and Frobenius norm regularization are introduced simultaneously.

Fig. 6. The effect of different 𝜇 and 𝜆 values on the classification task when the 𝛾 value is fixed (𝛾=1). (a) AD vs. NC, (b) pMCI vs. sMCI, (c) MCI vs. NC, (d) AD vs. MCI, (e)
AD vs. pMCI, (f) AD vs. sMCI, (g) pMCI vs. NC, and (h) sMCI vs. NC. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 7. The effect of different 𝛾 and 𝜆 values on the classification task when the 𝜇 value is fixed (𝜇=10). (a) AD vs. NC, (b) pMCI vs. sMCI, (c) MCI vs. NC, (d) AD vs. MCI, (e)
D vs. pMCI, (f) AD vs. sMCI, (g) pMCI vs. NC, and (h) sMCI vs. NC.
From the above analysis, it can be seen that the optimal 𝜇, 𝜆,
nd 𝛾 values for different groups of classification tasks are different.
ased on the optimal 𝜇, 𝜆, and 𝛾, we further analyzed the effect of the
umber of nearest neighbors on the classification results. Fig. 8 shows
he effect of different 𝑘 values on each group of classification tasks,
here the 𝑥-axis indicates the number of nearest neighbors, the 𝑦-axis

ndicates the classification accuracy, and the different colored curves
epresent different classification tasks. As can be seen from Fig. 8, the
urves for each color do not fluctuate much as the value of 𝑘 increases,
eaning that the number of nearest neighbors has no significant effect

n the classification performance. Therefore, it can be assumed that the
igher-order features extracted by the hypergraph method can reflect
he structure of the data very well.

.3. Comparison with existing methods

In Table 5, we compare the classification results of the proposed
𝑝MTFS method with those obtained from (1) studies combining single
odal feature selection and traditional machine learning for AD classi-

ication [6–10] and (2) studies combining multimodal feature selection
10
and traditional machine learning for AD classification [12,15,16,19].
It is worth noting that for comparison purposes, all studies used for
comparison used data from the ADNI dataset, with the difference being
that the subjects used in the studies were different. Although the subject
image data used for the studies varied, the ADNI study team performed
quality control and pre-processing on all image data. Therefore, we can
make a crude comparison of our method with these existing methods
to validate the effectiveness of our proposed method. As can be seen
from Table 5, our proposed method outperforms most existing methods
in terms of AD and NC classification, AD and MCI classification, and
pMCI and sMCI classification. Specifically, our method obtained a
classification accuracy of 98.78% in AD vs. NC, a 3.75% improvement
over the second best performance (95.03%); Our method obtained a
classification accuracy of 86.47% in AD vs. MCI, a 24.4% improvement
over the existing research (62.07%); Our method achieved a classi-
fication accuracy of 92.62% in pMCI vs. sMCI, an improvement of
13.37% over the existing method (79.25%). In addition, our method
obtained an accuracy of 78.15% in MCI and NC classification, which is
only 1.12% away from the highest accuracy (79.27%). In general, our
method has good performance in the classification and diagnosis of AD.
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Fig. 8. The classification results on different neighbor size of hyperedges. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Table 5
Comparison of the classification accuracy of our method with the existing methods.

Type Method Data(Number) Classification results (%)

AD vs. NC pMCI vs. sMCI MCI vs. NC AD vs. MCI

Single-modal

Chu et al. [6] sMRI (ADNI:580) 84.30 – 67.30 –
Ahmed et al. [7] sMRI (ADNI:509) 83.77 – 69.45 62.07
Liu et al. [8] sMRI (ADNI:459) 93.06 79.25 – –
Illán et al. [9] FDG PET (ADNI:401) 88.24 – 68.09 –
Padilla et al. [10] FDG PET (ADNI:105) 86.59 – – –

Multi-modal

Liu et al. [12] sMRI+ FDG PET
(ADNI:202)

94.37 – 78.80 –

Gray et al. [15] sMRI+ FDG PET +CSF
+Genetic(ADNI:147)

89.00 – 74.6 –

Zhang et al. [16] sMRI+ FDG PET +CSF
(ADNI:202)

93.20 – 76.4 –

Jie et al. [19] sMRI+ FDG PET
(ADNI:202)

95.03 – 79.27 –

Proposed method sMRI+FDG PET+
AV-45 PET(528)

98.78 92.62 78.15 86.47
6. Limitations

In this study, we propose a hypergraph 𝑝-Laplacian regularized
ulti-task feature learning method to jointly extract common features

rom multimodal image data to improve the accuracy of AD classifi-
ation. The method consists of four steps, namely data pre-processing,
ypergraph construction, multi-task feature selection with hypergraph
-Laplacian regularization, and multi-kernel classification. To validate
ur method, eight sets of classification experiments were performed
sing baseline sMRI images, FDG PET images, and AV-45 PET images of
28 subjects in the ADNI-2 dataset. The results show that the proposed
ethod not only allows for the joint extraction of common features

f multimodal data but also helps to identify biomarkers associated
ith AD. However, there are limitations to our study. First, the ADNI
ataset collects demographic, neuropsychological, imaging, genetic,
erebrospinal fluid, and blood data from individual subjects according
o a uniform standard, whereas our method uses only imaging data for
11
classification. Secondly, the ADNI dataset was scanned longitudinally
for all recruited subjects, i.e. MRI scans and PET scans were performed
on subjects at different time points (including baseline, 6 months, 12
months, 18 months, 24 months, 36 months, and 48 months). However,
in this study, we only used sMRI images, FDG PET images, and AV-45
PET images acquired at a single time point (baseline time) to classify
AD. Finally, we have only examined the problem of binary classification
and not the performance of multivariate classification, which is of
greater clinical relevance. In the future, we will combine these three
aspects to further refine our study and extending our method to other
applications such as diagnosis of cancer, parkinson’s, coronary heart
disease and other diseases.

7. Conclusion

In this study, we propose an AD classification method called the
hypergraph 𝑝-Laplacian regularized multi-task feature learning method.
The method captures the intrinsic correlation between different tasks
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through multi-task learning to jointly extract common features of mul-
timodal data. In particular, we introduced two regularization terms,
namely (1) a hypergraph 𝑝-Laplacian regularization term preserves
igher-order structural information of similar data and thus obtain
ore discriminative brain region features; and (2) a Frobenius norm

egularization term improves the noise immunity of the model, which
urther improves the classification accuracy of AD. Finally, we vali-
ated the performance of the proposed method on the ADNI-2 dataset,
howing that the proposed method not only captures the correlation
nformation between multimodal data well, but also helps to identify
iomarkers associated with AD.
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